
CS-202 Exercises on Wireshark and Network 
Performance (L12 - L13) 

 

Mini-lab: Wireshark​
 
The goal of this mini-lab is to get you familiar with a network inspection tool called Wireshark. 
If you are performing the lab on your own Windows/Mac computer, you can download 
Wireshark from this link. For Ubuntu, you can install it by running the following command in 
the terminal: sudo apt-get install wireshark​
 
 
Exercise 1:  Layers and headers​
 
The Internet architecture operates in layers. As a result, a packet that traverses the Internet 
looks, in a way, like an onion: On the “outside,” it is “wrapped up” in a link-layer header 
(which can be understood only by the link layer of computers and packet switches). If we “peel 
away” the link-layer header, we will find a network-layer header (which can be understood 
only by the network layer of computers and packet switches). If we also peel away the 
network-layer header, we will find a transport-layer header (which can be understood only by 
the transport layer of the end-point computers). And if we peel that away, too, we will find the 
application-layer header and data, which is the actual message that this packet is carrying. 

So, if we look inside an Internet packet, we will find a lot more information than the 
application-layer message that the packet is carrying: we will find meta-data, in the form of 
headers, which are needed by the various Internet layers in order to get the message from its 
source to its destination. 

We will now use Wireshark to look inside Internet packets. To get started, do the following: 

•​ Start your browser and clear its cache. For Firefox, click on the ≡ symbol on the 
upper-right, go to Settings → Privacy & Security → Cookies & Site Data → Clear data. 

•​ Start the Wireshark tool, e.g., by typing wireshark in the command line. You should see 
a list of your computer’s network interfaces (see Fig 1). Identify the one whose packets 
you will capture. If you are working through an INF3 computer or connected through 
vdi, you want to capture packets from your ethernet network interface. If you are 
working on a wirelessly connected computer, capture packets from your WiFi interface. 

•​ Start a capture by double-clicking on the target network interface. You should see data 
rolling inside the top part of your Wireshark window. These are the packets that are 
departing from and arriving at your network interface. They most likely make no sense, 
and that’s normal (by the end of the course, they will). 

•​ Use your web browser to visit http://www.mit.edu. 
•​ Stop capturing packets when the web page is fully loaded, by clicking on the square red 

button  at the left of the top menu. 

 

https://www.wireshark.org/download.html
http://www.mit.edu/


•​ Right underneath the top menu, you can specify a filter that you want to apply to the 
packets that you see. ​
 

 
Figure 1: Wireshark startup page 
 

Answer the following questions: 

•​ What messages were exchanged at the application layer, i.e., between your web 
browser and the MIT web server? 

Type http in the filter line, you should see all the packets carrying HTTP messages. 
HTTP (Hypertext Transfer Protocol) is the communication protocol used between web 
browsers and web servers. Now check the “Info” column to find the information that 
these messages are carrying. Is MIT server using HTTP or another protocol to send 
website content to your browser (Hint: look at the HTTP response & its header fields)? 

•​ Which technology/communication protocol was used at the transport layer? There are 
two of them, TCP (Transmission Control Protocol) and UDP (User Datagram Protocol), 
and you need to figure out which one was used. To answer, click on one of the packets in 
the top section of your Wireshark window, then check the detailed information about this 
packet that appears in the middle section of your window. You should see information 
about each layer. Near the bottom, you should see a line that refers to the application 
layer (it says “Hypertext Transfer Protocol”). What does the line on top of that say? 

•​ What messages were exchanged at the transport layer, i.e., between the transport layer 
on your computer and the transport layer on the computer running the MIT web server? 

This is a little bit trickier to answer. First of all, you need to replace http in the filter line 
with the correct transport-layer technology/communication protocol, which you figured 
out in the previous question. But if you do just that, then you will see ALL the messages 
exchanged by your computer using that protocol, whereas you only want the ones 
exchanged with the computer running the MIT web server. So, you need to add 
something more to the filter. Poke around a bit in Wireshark documentation on how to 
specify filters, and you should figure it out. 

​
A key point here is that the application-layer messages and the transport-layer messages 
were not carried in separate Internet packets. Rather, the same packets carried BOTH 
transport-layer and application-layer information, but the transport- layer information 
was stored inside the transport-layer header of each packet, whereas the 
application-layer information was stored inside the application-layer header and data. 

 



Exercise 2: Encapsulation 

Now we will examine the concept of encapsulation, meaning that each message encapsulates 
a message that belongs to a higher layer. E.g., a network-layer message consists of a 
network-layer header plus a transport-layer message, which consists of a transport-layer 
header plus an application-layer message, which consists of an application-layer header plus 
data. 

Display the messages exchanged at the application layer (the HTTP messages) and click on 
one of them. Can you spot the different layers? Fig 2 shows where each header starts. Notice 
that each header has different fields from the other headers. Each field is there to serve a 
specific functionality related to that layer. In this course, we will go through each layer, from 
bottom to top, and explain its functionalities. Towards the end, you will understand how the 
different layers interact and what most of these fields mean.​
 

 
Figure 2: The different layers of a message​

 
But now let us see if you can figure out some: 

•​ How many bytes does the HTTP message contain? To answer, check the packet details 
in the middle section of your Wireshark window. Look at the transport- layer 
information and, in particular, the Len field, which specifies the size of the 
application-layer message that is encapsulated inside the transport-layer message.​
 

•​ How many bytes do the transport-layer and network-layer headers add to the HTTP 
message?​
 

•​ How many bytes does the link layer add? 

 



Paper and pencil exercises: Network Performance 

The goal of these exercises is to understand the meaning of throughput and delay, as well as 
the nature of different delay components. 

 

Transmission rate and throughput 

The transmission rate of a link is the rate at which we can push bits into the link,The 
throughput between two end-systems is the rate at which destination receives data, and 
computed as the total amount of data transferred divided by the total transfer time.  

We measure both in “bits per second” (bps), “kilobits per second” (Kbps), “megabits per 
second” (Mbps), and so on. 

 

The different components of delay 

A packet experiences different kinds of delay: 

•​ The transmission delay experienced by a packet on a link is the amount of time it 
takes to push the bits of the packet onto the link, and it is equal to the packet length 
divided by the link transmission rate. 

•​ The propagation delay of a link is the amount of time it takes for one bit to go from 
one end of the link to the other, and it is equal to the link length divided by the link 
propagation speed. 

•​ The queuing delay experienced by a packet at a switch is the amount of time the 
packet sits inside a queue at the switch, waiting for other packets to be processed and 
transmitted. Queuing delay depends on the other traffic that traverses the same links and 
shares the same queues as the packet. 

•​ The processing delay experienced by a packet at a switch is the amount of time it takes 
for the switch to process the packet (after it removes it from the queue and before 
starting to transmit it). Processing delay depends on the switch’s processing capabilities 
and is typically independent of packet size, at least in most of the scenarios we will 
discuss in this class. 

 



Exercise 3: Delay estimation over a single link 

Two end-systems, A and B, are connected by a single link of transmission rate R, length l, and 
propagation speed c. R = 100 Mbps, l = 200 km, c = 2 · 108 m/s. 

•​ What is the propagation delay of the link?​
 

A sends two back-to-back packets to B, the first one of size L1 = 1 kb, the second one of size L2 
= 10 kb. 

•​ What is the transmission delay experienced by each packet? 

•​ What is the total transfer time, i.e. the time that elapses from the moment A starts 
transmitting the first bit of the first packet until the moment B receives the last bit of the 
second packet? 

•​ What is the packet inter-arrival time at B, i.e., the amount of time that elapses from the 
moment the last bit of the first packet arrives until the moment the last bit of the second 
packet arrives?​
​
 

Exercise 4: Store-and-forward packet switching 

Let’s examine how transfer time changes as we start introducing network devices between 
source and destination. Suppose end-systems A and B are connected by not one, but N links 
and N-1 packet switches. All the links have the same properties as the link in the previous 
problem. These packet switches typically perform store-and-forward packet switching: when a 
switch receives a bit, it must store that bit in a buffer until the last bit of the corresponding 
packet has arrived; only then can the switch process the packet and start transmitting it over 
the next link. 

 

Figure 3: Two end-systems connected through multiple links and packet switches. 

Assume that the processing delay at each switch is 0. Still, the fact that every switch must 
buffer every bit until it has received the corresponding packet means that there will be some 
extra delay. (Picture a car rally where every time the first car arrives at an intermediate stop, it 
must wait for all the cars behind it to arrive before it can start again. Now replace the cars with 
bits of a packet.)​
​
This is a good moment to introduce what we call timing diagrams: pictures that represent the 
various delays that a packet experiences as it travels through a network path. We have started 
such a diagram below (Figure 4): 

 



•​ There is a continuous vertical line for each end-system and switch; these lines represent 
time axes. 

•​ A dashed horizontal line, that crosses the time axes, represents a point in time. For 
example, on the timing diagram below, the first dashed horizontal line represents t = 0, 
the second one represents t = dprop, and so on. 

•​ A continuous line that connects two time axes represents a bit as it travels between the 
corresponding devices; the beginning of this line represents the moment when the bit 
was transmitted, while the end of the line represents the moment when the bit arrived at 
the corresponding device. For example, on the timing diagram, the first continuous line 
between the A and Switch1 time axes represents the first bit of the first packet as it 
travels from A to Switch1; the second continuous line between the same time axes 
represents the last bit of the first packet. 

Using these diagrams, we can easily identify the various delay components that a packet 
experiences on each link and at each switch. We have marked the first packet sent from A to B, 
when N = 2 links. Notice what is happening at the switch: because it is a store-and-forward 
switch, it cannot transmit the first bit of the first packet as soon as it receives it, it must wait 
for the last bit of the first packet to arrive; only then it can process and transmit the first 
packet. 

You can draw a new diagram, with 4 time axes, to solve the problem for N = 3. You cannot 
draw a diagram for an arbitrary number of links N , but 2 and 3 links are usually enough to 
give you the right intuition.​
 

 
Figure 4: Timing diagram for a transmission over two links connected by a packet switch.​

 

A sends two back-to-back packets to B, each of size L = 1 kb. 

•​ What is the total transfer time when N is equal to 2, then 3 links? 

•​ What is the total transfer time as a function of an arbitrary number of links N ? 

•​ How do your answers change when the processing delay at each switch is dproc = 1µs per 

 



packet? Assume that the switch must finish processing and transmitting a packet before 
it starts processing the next packet. 

•​ Does the second packet experience any queuing delay at the first store-and-forward 
switch? To answer, focus on the first switch and compute the difference between: 
(a) when the switch transmits the last bit of the first packet and (b) when the switch 
receives the last bit of the second packet. If this is greater than 0, it means that the 
second packet must wait for the switch to finish transmitting the first packet, i.e., it 
experiences queuing delay. 

•​ Does the second packet experience any queuing delay at any other switch? 

•​ Consider that A and B are connected through N − 1 store-and-forward switches, each 
introducing processing delay 0. Except now, A sends P back-to-back packets to B, all 
with the same length L. Assume zero propagation delays. What is the total transfer 
time?​
 

•​ When two end-systems communicate over the Internet, they often exchange P > 2 
packets. Intuitively, that should increase the total transfer time, but by how much? A 
factor of P ? Does it depend on N ? 

​
 

Exercise 5: Queuing and bottlenecks 

You may have noticed the artificial uniformity in the previous problems: all packets were of 
the same length, all links were of the same transmission rate, etc. Reality is not like this, of 
course. Packets have different lengths, and links have different transmission rates, and both of 
these things lead to queuing. Even if A and B are alone in the Internet—there is no other traffic 
to interfere with theirs—when A sends back-to-back packets to B, a packet may have to wait at 
a store-and-forward switch for the previous packet to be transmitted, either because the 
previous packet is longer, or because the next link is slower. 

End-systems A and B are connected through two links with one store-and-forward packet 
switch in the middle, introducing processing delay 0. Both links have propagation delay dprop. 
The first link has transmission rate R1, while the second one has transmission rate R2.​
 

 
Figure 5: Two end-systems connected through two links.​

 
Assume that R1 = R2. A sends two back-to-back packets to B, the first one of size L1, the second 
one of size L2 ≠ L1. 

•​ In which scenario does the second packet experience queuing delay at the switch? How 
much? 

•​ What is the total transfer time (in this scenario)? 
 



Suppose A and B are connected though N links and N − 1 store-and-forward packet switches, 
each introducing processing delay 0, all links have propagation delay dprop and transmission 
rate R, and A sends P back-to-back packets to B, of different lengths, L1, L2, ..., LP . Assume 
infinite packet-switch buffers (no packet drops). 

•​ What is the total transfer time?​
 

Now let’s go back to the simpler scenario where A and B are connected through two links with 
one store-and-forward packet switch in the middle, introducing processing delay 0. Assume 
that R2 ≠ R1. A sends two back-to-back packets to B, each of size L. Is it possible that the 
second packet experiences queuing delay at the switch? Let’s consider all the possibilities: 

•​ Suppose R1 < R2, i.e., the first link has a lower transmission rate than the second one, in 
other words, the first link is the bottleneck. (Picture a narrow local street, followed by a 
wide highway. Would you expect cars to queue up at the highway entrance?) 

–​ How much queuing delay does the second packet experience at the switch? 

–​ What is the packet inter-arrival time at B? 

•​ Now suppose R1 > R2, i.e., the second link is the bottleneck. (Picture a wide highway, 
followed by a narrow local street. Would you expect cars to queue up at the highway 
exit?) 

–​ How much queuing delay does the second packet experience at the switch? 

–​ Suppose that A sends the second packet T seconds after sending the first one. 
How large must T be to ensure no queuing at the switch? 

​
 
Exercise 6: Parallel paths and throughput 

Usually, multiple network paths exist between end-systems. Intuitively, adding multiple paths 
between two end-systems should improve network performance, but which metric exactly? 
Clearly, adding paths (of the same type) cannot reduce the propagation delay between two 
end-systems, nor the transmission delay experienced by each single packet. What it can change 
is the overall rate at which A can send data to B: the throughput. 

End-systems A and B are connected over M parallel network paths; in this context, “parallel” 
means that they do not share any links between them. Each path k ∈ [1, 2, . . . , M ] consists of 
N links with transmission rates R1

k , R2
k , . . . , Rnk . 

Assume that A wants to send an infinite amount of data to B. 
 

 



 
Figure 6: A network topology with multiple parallel paths. 

 
•​ What is the maximum possible throughput from A to B, when they can use only one 

path at a time? 

•​ How does your answer change when A and B can use all M paths simultaneously? 
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